Training wavelet networks for nonlinear dynamic input-output modeling

نویسندگان

  • Yacine Oussar
  • Isabelle Rivals
  • Léon Personnaz
  • Gérard Dreyfus
چکیده

In the framework of nonlinear process modeling, we propose training algorithms for feedback wavelet networks used as nonlinear dynamic models. An original initialization procedure is presented, that takes the locality of the wavelet functions into account. Results obtained for the modeling of several processes are presented; a comparison with networks of neurons with sigmoidal functions is performed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

Neural-based Transient Behavioral Modeling of IC Buffers for High-speed Interconnect Design

Artificial neural networks (ANN) have gained attention as fast and flexible vehicles to microwave modeling and design. This paper reviews a recent advance of neural network modeling, i.e., state-space dynamic neural network (SSDNN) for transient behavioral modeling of high-speed nonlinear circuits. The SSDNN model can be directly trained from the input and output waveforms without relying on th...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Multi-input Multi-output Beta Wavelet Network: Modeling of Acoustic Units for Speech Recognition

In this paper, we propose a novel architecture of wavelet network called Multi-input Multi-output Wavelet Network MIMOWN as a generalization of the old architecture of wavelet network. This newel prototype was applied to speech recognition application especially to model acoustic unit of speech. The originality of our work is the proposal of MIMOWN to model acoustic unit of speech. This approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998